On the number of D-optimal designs
نویسندگان
چکیده
منابع مشابه
On the Enumeration of Some D-optimal Designs
Abstract. Two matrices with elements taken from the set {−1, 1} are Hadamard equivalent if one can be converted into the other by a sequence of permutations of rows and columns, and negations of rows and columns. In this paper we summarize what is known about the number of equivalence classes of matrices having maximal determinant. We establish that there are 7 equivalence classes for matrices ...
متن کاملSome new D-optimal designs
We construct several new (v; r, 8; A) supplementary difference sets with v odd and T' + .5 = A + (v 1) /2. They give rise to D-optimal designs of order 2v. D-optimal designs of orders 158, 194, and 290 are constructed here for the first time. We also give an up to date survey of this class of supplementary difference sets in arbitrary Abelian groups of odd order v < 100. o. Introduction Supplem...
متن کاملApproximate D-optimal designs of experiments on the convex hull of a finite number of information matrices
In the paper we solve the problem of DH-optimal design on a discrete experimental domain, which is formally equivalent to maximizing determinant on the convex hull of a finite number of positive semidefinite matrices. The problem of DH-optimality covers many special design settings, e.g. the D-optimal experimental design for regression models with grouped observations. For DH-optimal designs we...
متن کاملsurvey on the rule of the due & hindering relying on the sheikh ansaris ideas
قاعده مقتضی و مانع در متون فقهی کم و بیش مستند احکام قرار گرفته و مورد مناقشه فقهاء و اصولیین می باشد و مشهور معتقند مقتضی و مانع، قاعده نیست بلکه یکی از مسائل ذیل استصحاب است لذا نگارنده بر آن شد تا پیرامون این قاعده پژوهش جامعی انجام دهد. به عقیده ما مقتضی دارای حیثیت مستقلی است و هر گاه می گوییم مقتضی احراز شد یعنی با ماهیت مستقل خودش محرز گشته و قطعا اقتضاء خود را خواهد داشت مانند نکاح که ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 1994
ISSN: 0097-3165
DOI: 10.1016/0097-3165(94)90063-9